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The behavior of a plasma-beam system immersed in a magnetic field B0 is investigated theoretically under 
the assumption that the electrons comprised in the beam have helical trajectories coaxial with Bo. The 
beam is designated as "helical." The plasma-beam system is examined for instabilities which result in 
growing transverse waves aligned in a direction parallel to that of Bo. Two classifications of instabilities are 
introduced. In accordance with one of these, the instabilities can be "superluminous," "subluminous," or 
"counterstreaming," depending on direction and velocity of the excited wave. The other classification dif
ferentiates between excited " P " and "B" waves and is based on the comparison of some of the waves excited 
by the beam and the corresponding waves which can be radiated by a single particle in the unperturbed 
plasma. If the beam is linear (not helical), i.e., if the electron trajectories in the beam are parallel to Bo, 
there is only one type of instability ("P" instability) in which the frequencies of the waves excited by the 
beam differ very little from the frequency of the corresponding waves which can be radiated by a single 
particle in the undisturbed plasma. On the other hand, if the beam is helical there is an additional instability 
("B" instability). The latter instability occupies a relatively wide frequency range in the neighborhood of 
the corresponding " P " instability and represents a continuation of the " P " instability along the frequency 
axis. When the intensity of the helical beam is sufficiently small, the " P " instability is "strong" and the "B" 
instability is "weak," i.e., the rate of growth of the "B" waves is relatively small. Physical conditions under 
which different types of instability may occur are discussed and the above types of plasma-beam instabilities 
are investigated with particular reference to the frequency ranges and rates of growth of the excited waves. 
It is shown that a " P " instability is always multiple, i.e., there are at least two excited waves having different 
frequencies which are aligned in the direction of the magnetic field. (A multiple " P " instability does not 
occur if the beam is linear.) The character of the multiple " P " instability is analyzed for various transverse 
and longitudal velocity components of the electrons in the beam. Using a graphical analysis of the dispersion 
equation for the plasma-beam system in the oj-k plane (where w is the frequency and k is the wave number), 
it is found that superluminous and subluminous instabilities are convective, whereas counterstreaming 
instabilities are nonconvective. 

INTRODUCTION 

THIS investigation deals with the interaction of a 
stationary plasma and an electron beam in the 

presence of a static magnetic field B0. I t is assumed that 
the electrons in the beam have helical trajectories 
coaxial with B0. Each of these electrons has a velocity 
component vn = fiuc in the direction of B0 and a velocity 
component Vi=PiC in the direction perpendicular to Bo. 
The beam formed by these electrons is designated as 
"helical" and it moves with velocity vu (or fiu) in 
the direction parallel to that of Bo. The helical beam 
can be expressed in the form of a distribution function 
in electron velocity space. Using rectangular coordi
nates vx, vy, vz in which the vz axis is aligned in the 
direction of Bo and assuming that 

Wr2 = »aH-*y2 (0.1) 

one can represent such a distribution function as 
follows1: 

f(i>z,Vr) = (l/2<irvr)8 (vz— v{ x)b (vr— vL). (0.2) 

An analysis is given of instabilities which result from 
the interaction of a helical beam with a stationary 
cold plasma and give rise to transverse (circularly 
polarized) waves moving in the direction parallel to 

1 V. V. Zhelezniakov, Izv. Vysshikh Uchebn-Zavedenii Radiofiz. 
I l l , 57 (1960) [English transls.: News of Higher Educational 
Institutions, Ministry of Higher Education, U.S.S.R., Radio 
Physics Series, Vol. 3, No. 1 (1960); Joint Publications Research 
Service, No. 7377 (1961)]. 

that of Bo. Various types of plasma-beam systems are 
investigated with particular reference to the frequency 
ranges and rates of growth of the waves associated with 
these instabilities. 

The interaction of a plasma with a helical beam is 
of relatively frequent occurrence in astrophysics, geo
physics, thermonuclear research, etc. In the early 
stages of the development of radio astronomy it was 
suggested by Kiepenheuer2 that the nonthermal radio 
emissions from the sun are due to beams of electrons 
produced at the sunspots and directed at an arbitrary 
angle to the magnetic field. These helical beams spiral 
out of the sunspots into the surrounding plasma which 
forms the solar corona. Similar types of interactions 
occur under terrestrial conditions in the outer regions of 
the ionosphere (exosphere). They are caused by helical 
beams which comprise electrons and protons gyrating 
around the earth's magnetic field and are believed to 
produce auroral effects. These beams interact with the 
plasma in the exosphere and generate very low fre
quency electromagnetic radiations which are detected 
at the earth's surface in the form of continuous noise 
and whistlers.3 These radiations were described appar
ently for the first time by Menzel and Salisbury4 and 
subsequently studied by others. 

The results of this paper are expressed in terms of 

2 K. O. Kiepenheuer, Nature 158, 340 (1946). 
3 L. R. O. Storey, Phil. Trans. Roy. Soc. London Ser. A 246, 

113 (1953). 
4 D. H. Menzel and W. W. Salisbury, Nature 161, 91 (1948). 
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appropriate nondimensional parameters defining various 
types of plasma systems. This has been done in order to 
facilitate the applications of these results to representa
tive types of plasma which occur in nature or which 
may be produced in a laboratory. A very useful classifi
cation of plasmas based on these nondimensional pa
rameters was introduced by Denisse and Delcroix.5 On 
the basis of the results obtained in this paper, various 
observable phenomena which occur in plasma-beam 
systems can be predicted. 

Relatively few publications which have appeared to 
date deal with instabilities produced in a plasma by a 
helical beam. In the past most of the investigations 
were concerned with a beam in which the trajectories of 
the charged particles are aligned in the direction 
parallel to that of B0. A rather extensive bibliography 
dealing with plasma-beam instabilities is listed in a 
recent review paper by Fainberg.6 

The most pertinent work dealing with the subject of 
this paper is that of Zhelezniakov.1 Zhelezniakov formu
lated the dispersion equation for a system in which a 
helical beam interacts with a stationary plasma and 
obtained specific solutions of this equation on the 
assumption that the stationary plasma is characterized 
by a refractive index N(ca) (where co is the frequency of 
the waves resulting from the interaction). The present 
investigation provides an analysis of various aspects of 
the interaction which were not considered by Zhelez
niakov, takes into account the motions of both ions 
and electrons in the stationary plasma and points out 
the significance of various physical factors which deter
mine the character of the instabilities. 

In the following discussion two classifications of 
instabilities are introduced. The first classification is 
based on the comparison of an excited wave in the 
plasma-beam system with a stationary wave which may 
be radiated by a single particle in the undisturbed 
plasma. This classification deals with two types of insta
bilities which will be designated, respectively, as a "P" 
instability and a "B" instability. In a P instability a 
growing wave (P wave) has the property that for de
creasing beam intensity the frequency of this wave ap
proaches as a limit the frequency of a wave radiated by 
a single particle in the undisturbed plasma. If the beam 
is linear, i.e., if the electrons in the beam have trajec
tories aligned along the direction parallel to that of 
Bo (#i=0), there is only one type7 of instability (P in
stability). On the other hand, if the beam is helical 
(#x?^0), there is an additional instability (B instability) 
which gives rise to excited B waves. A B instability 

5 See J. F. Denisse and J. L. Delcroix, Theorie des ondes dans les 
plasmas (Dunod Cie., Paris, 1961), in particular Table III, 1 on 
p. 32. See also the equations (3.1) and (3.2) of this investigation 
which define the nondimensional parameters A and rj characteriz
ing various types of plasma. The quantity "A" used by Denisse 
and Delcroix is approximately the quantity "A2" defined in (3.1). 

6IA. B. Fainberg, J. Nucl. Energy: P. C 4, 203 (1962). 
7 Jacob Neufeld and Harvel Wright, Phys. Rev. 129, 1489 

(1963). 

occupies a relatively wide frequency range in the neigh
borhood of a P instability and represents a continuation 
of the P instability along the frequency axis. 

If the intensity of the helical beam is sufficiently 
small, the P instability is "strong" and the B in
stability is "weak," i.e., the rate of growth of P waves 
is relatively large, whereas the rate of growth of B 
waves is relatively small.8 

The second classification of plasma-beam instabilities 
is based on the relationship between the velocity of the 
beam and the phase velocity of the excited waves. In 
accordance with the second classification, the insta
bilities will be labeled as "superluminous," "sub-
luminous," or "counterstreaming." In a superluminous 
instability the velocity of the beam exceeds the phase 
velocity of the excited wave; in a subluminous in
stability it is less than the phase velocity of the excited 
wave; and in both cases the direction in which the ex
cited wave moves is the same as that of the beam. In a 
counterstreaming instability, the excited wave moves 
in the direction opposite to that of the beam. 

In recent literature dealing with instabilities pro
duced by a beam, one can find several references con
taining a discussion of superluminous and subluminous 
instabilities associated with transverse waves aligned in 
the direction parallel to that of the externally applied 
magnetic field. The occurrence of these instabilities de
pends on the character of the beam. If the beam is 
linear, i.e., if fr.=0, the instability is always super-
luminous.9 For a helical beam, i.e., when ft. 3^0, there 
is a superluminous and subluminous instability.10 I t 
is pointed out in this investigation that in the case of a 
helical beam there is also a counterstreaming insta
bility, and various properties of the superluminous, 
subluminous, and counterstreaming instabilities are in
vestigated in detail. 

I t has also been found in this investigation that a P 
instability is always multiple, i.e., there are either two 
or four excited transverse waves having different fre
quencies which are aligned in the direction of the beam. 
If there are two excited waves, one of these represents a 
superluminous and the other a counterstreaming in
stability. If there are four excited waves, one represents 
a superluminous instability, another represents a 
counterstreaming instability, and the two remaining 
waves represent a subluminous instability. 

A multiple P instability occurs only if the electron 

8 Jacob Neufeld, Phys. Rev. 124, 1 (1961); see also Jacob 
Neufeld and P. H. Doyle, ibid. 121, 654 (1961); and Jacob Neufeld, 
ibid. 127, 346 (1962). 

9 The superluminous instability is directly related to the 
anomalous Doppler effect produced by oscillators moving with 
superluminous velocity in the direction of the magnetic field. See 
in that connection V. V. Zhelezniakov, Ref. 2, and G. G. Get-
mantzev and V. O. Rapoport, Zh. Eksperim. i Teor. Fiz. 38, 1205 
(1960) [English transl.: Soviet Phys.—JETP 11, 871 (I960)]. 

10V. L. Zhelezniakov, Ref. 2, andlA. B. Fainberg, Ref. 1; See 
also a discussion on a related subject by A. A. Gaponov, Zh. 
Eksperim. i Teor. Fiz. 39, 326 (1960) [English transl.: Soviet 
Phys.—JETP 12, 232 (1961)]. 
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beam is helical, i.e., a multiple instability does not occur 
if the electron beam is linear. 

A discussion is given on the relative rates of growth 
of the excited waves representing a multiple P insta
bility. The study of the relative rates of growth is useful 
in ascertaining which one of the multiple occurring 
instabilities is "dominant," i.e., has the largest rate 
of growth. 

Analyzing the dispersion equation for the plasma-
beam system in the co—k plane,11 one can ascertain 
which instabilities formulated in this paper are con-
vective and which are nonconvective. In a convective 
instability a disturbance increases as it is carried along 
the system and it remains finite at each point. In a 
nonconvective instability a disturbance which originates 
in a limited region of space at any instance of time grows 
indefinitely for t—>°o in this region (in the linear 
approximation). It is found in this investigation that 
subluminous and superluminous instabilities are con
vective, whereas counterstreaming instabilities are 
nonconvective. 

I. DISPERSION EQUATION 

A. Formulation of the Problem 

1, General 

The problem outlined in the Introduction will be 
investigated under very simplified physical assump
tions. That is, such factors as the presence of boundaries, 
density gradients, and temperature effects in the sta
tionary plasma are not considered. 

The stationary plasma is cold and uniform. It is dis-
sipationless, extended in space, and contains no sources 
of energy. The electrons and ions in the stationary 
plasma have densities (1—o)n and n, respectively, and 
the density of the electrons in the beam is an. Thus, the 
plasma-beam is charge equilibrated. It is assumed that 
the electron density of the beam is small when compared 
to the electron density of the stationary plasma, i.e., 

x « l . (l.D 
The beam is considered to produce a small perturba

tion in the stationary plasma. Since ft^O, the beam is 
helical and moves with velocity /3n. When ffu is positive 
(or negative) the beam moves in the direction of (or 
opposite to that of) Bo. 

The following symbols are used: 

/47rne2\112 /Airne2^1'2 

\ m ) '' "* \ Mi ) 

\e\Bo 

mc 

\e\B* 

MiC 

(1.2) 

where m and e designate, respectively, the mass and the 
charge of an electron, and Mi is the mass of an ion in 

11 P . A. Sturrock, Phys. Rev. 112, 1988 (1958); see also, L. D. 
Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon Press, 
Inc., London, 1959), pp. 111-114. 

the stationary plasma. The ions are assumed to be 
singly charged. In the absence of the beam, i.e., when 
c=0, the quantity n represents the electron and ion 
density in the unperturbed plasma. Consequently, coe is 
the plasma frequency. The quantities 2e and 0* repre
sent, respectively, the magnitudes of the electron and 
ion gyrofrequencies. 

2. Dispersion Equation 

Consider a plasma-beam instability which results in 
the excitation of waves aligned in the direction parallel 
to that of Bo, i.e., assume that 

k||B., (1.3) 

where k is the wave vector characterizing these waves. 
The waves defined by (1.3) may be longitudinal or 
transverse. The present investigation deals with circu
larly polarized transverse waves. The electrical intensity 
E of the excited waves is perpendicular to the wave 
vector k and rotates with the angular frequency w. 
The dispersion equation for such waves has been formu
lated by Zhelezniakov1 and is as follows: 

where 
Fp-aFb=0, (1.4) 

and 

cofco (l~a)coe
2o) 

Fp=Fp(o>,k) = a>2-c2k2 (1.5) 

oo—ckfiu 
Fb^Fb(G>,k) = u2(l-p2)V2\ — 

Leo—ckBu — 

2[«-c*)8I,-0.(l-j8«)1 '13 ;]• (1.6) 

Since cr<$Cl, the expression (1—or) in the last term of the 
right-hand side of (1.5) will be replaced by 1. The 
quantity /32 in (1.6) is as follows: 

/32=/3n2+ft2. (1.7) 

The expression Fp depends on the parameters of the 
stationary plasma, and 

Fp=0 (1.8) 

represents the dispersion equation for the waves which 
can be transmitted through the stationary plasma (in 
the absence of the beam). The expression — aFb repre
sents the perturbation produced by the beam. For &=() 
the equation (1.4) describes a system in which the elec
trons in the beam have trajectories aligned in the 
direction of B0. 

A related problem dealing with transverse instabili
ties in a thermal plasma immersed in a magnetic field 
was investigated by Harris.12 Harris considered a 
problem in which the "longitudinal'' and "transverse" 
velocity spreads are different and obtained a dispersion 

12 E. G. Harris, J. Nucl. Energy: P. C 2, 138 (1961). 
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equation applicable to a nonrelativistic case which has 
to some extent a formal similarity to the one obtained 
by Zhelezniakov. One can also mention a related prob
lem dealing with anisotropic velocity distributions dis
cussed by Weibel.13 

Following the customary procedure,14 Eq. (1.4) is 
solved for co assuming that k is real. The roots of (1.4) 
are represented in the form 

cc=6o+8, (1.9) 

where to is real and 

l im5=0. (1.10) 
<r->0 

The roots in to may be complex and if Im5<0 there is 
an instability which is represented by an oscillation in 
which the amplitude grows exponentially with time. 
The quantity Reco is the characteristic frequency of an 
excited wave and | Imco | = | Im51 is its rate of growth. 

The expression (1.4) describes circularly polarized 
waves. The angular frequency co and the wave number 
k may be positive or negative. If w is positive, the wave 
rotates clockwise when the observer is looking in the 
positive direction (i.e., in the direction of the magnetic 
field Bo). The phase velocity of the wave is 6o/k. The 
sign of co/k indicates the direction of propagation of the 
wave, i.e., if co/k>0, the wave moves in the direction of 
the magnetic field, and if o3/£<0, the wave moves in 
the direction opposite to that of the magnetic field. 

A circularly polarized wave has a positive or a nega
tive helicity. The term positive helicity designates a 
wave in which the electric vector rotates clockwise as 
the wave moves away from the observer. For such a 
wave designated as an H+ wave, one has <£>0 and 
co/k>0 or co<0 and co/&<0. On the other hand, for 
an H- wave having negative helicity, one has co>0 and 
co/&<0 or co<0 and cb/k>0. Hence, for a fixed sign of 
u the sign of the wave number k determines the helicity 
of the wave.7 For k>0, one has a wave of positive 
helicity or an H+ wave, and for k<0, one has a wave of 
negative helcity or an # _ wave. The wave having posi
tive helcity is often designated as "left-handed po
larized wave."15 

3. Resonant Waves 

Consider the term <rFb which represents the contribu
tion of the beam to the dispersion equation (1.4). I t has 
been assumed that the intensity of the beam is small 
(d<$Cl). Therefore, if the expression Fb is bounded, then 
for sufficiently small values of a the contribution of the 
term aFb to the dispersion equation (1.4) is negligible. 
Thus the effect of the beam is significant only in the 
neighborhood of singularities of the expression Fb. 

13 E. S. Weibel, Phys. Rev. Letters 2, 83 (1959). 
14 See, for instance, A. I. Akhiezer and IA. B. Fainberg, Zh. 

Eksperim. i Teor. Fiz. 21, 1262 (1951). 
15 See, for instance, J. D. Jackson, Classical Electrodynamics 

(John Wiley & Sons, Inc., New York, 1962), p. 206. 

Motivated by this consideration, waves will be analyzed 
for which the characteristic frequency Reco satisfies the 
condition 

R e c o ^ c o = ^ n + ^ ( l - / 3 2 ) 1 / 2 . (1.11) 

This expression represents a resonance between the 
characteristic frequency of the excited wave and the 
Doppler shifted electron gyrofrequency of the electrons 
in the beam. 

A resonance condition similar to (1.11) for a plasma-
beam system in which the electrons move in the direc
tion parallel to that of B0 (i.e., when fii = 0) was formu
lated, apparently for the first time, in an unpublished 
report by Dawson and Bernstein.16 

B. Analysis of the Dispersion Equation 

1. P and B Waves 

In seeking to understand more fully the mechanism 
of the excitation of waves by a helical electron beam, 
some insight can be gained by comparing the "particle 
problem" with the "beam problem." The particle prob
lem deals with the radiation produced by a single par
ticle moving along a helical trajectory around a line of 
the magnetic field. The beam problem is concerned with 
the radiation produced by a beam, i.e., it takes into 
account the collective effects due to an assembly of 
charged particles gyrating in the magnetic field. In the 
particle problem there are no stability considerations 
and the energy flow is represented by a nonzero Poyn-
ting vector which is real. There are no complex quan
tities that would indicate growth or decay. On the other 
hand, the beam problem is based on stability considera
tions and is expressed by the emergence of a growing 
excited wave which results from an instability. 

I t will be shown that as a result of the perturbation 
produced by the beam there are two types of growing 
waves which occur in a plasma-beam system: a P wave 
which can be directly associated with a wave produced 
by a single particle and remaining waves designated as 
B waves. 

Let a/, kr represent the frequency and the wave num
ber of a wave which is radiated in the wave zone by a 
single helical particle and which moves in the direction 
of the magnetic field. The frequency of such a wave will 
be equal to the Doppler shifted angular frequency of 
the particle. Furthermore, a/ and kf have to satisfy the 
dispersion equation for the unperturbed plasma. 

Consequently, 

< / = « ; Fp(<*',k') = Q. (1.12) 

Consider now the collective effect of an assembly of 
helical electrons which form a beam. Let w" be the fre
quency of a wave in a plasma-beam system with a wave 

16 J. Dawson and I. B. Bernstein, paper presented at the Con
trolled Thermonuclear Conference, D. C , TID-7558, 360, 1958 
(unpublished); see also I. B. Bernstein and K. Trehan, Nucl. 
Fusion 1, 3 (1960). 
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number k\ i.e., the same wave number as in the case of 
the particle problem. The quantities co", k' must satisfy 
the dispersion equation for the plasma-beam system, i.e., 

F p (co / , , f t , ) -^ ( w
, / , f t / ) = 0. (1.13) 

One has in accordance with (1.9) 

« " = « + « (1.14) 

and in accordance with (1.10) 

limco''=co. (1.15) 
o->0 

I t will be shown that there are two sets of solutions 
co". One set satisfies the relationship 

limco"=co', (1.16) 

and the other set satisfies the relationship 

Hmco'Vco'. (1.17) 
o--K) 

Thus, for a —» 0, the set defined by the relationship 
(1.16) represents excited waves having characteristic 
frequencies which differ very little from the corre
sponding stationary waves radiated by a single particle 
in the unperturbed plasma. These are the P waves which 
satisfy the relationship 

( F p ) ^ a = 0. (1.18) 

On the other hand, the relationship (1.17) defines 
waves which do not approach in the limit any waves 
which can be radiated by a single particle. These latter 
waves are the B waves and they do not satisfy the 
relationship (1.18). 

An alternate definition of a P wave excited by a beam 
with velocity components /3n and A. is as follows: a P 
wave is a wave with a wave number k which is equal 
to that of a wave radiated in the unperturbed plasma 
by a single particle having velocity components pu 

and ft. 

2. Analysis of the Dispersion Equation 

Considering (1.9) and (1.11), Eq. (1.4) can be ex
pressed in the form 

(dFp/dai)^8*+(Fp)^J2 

~ | [ c r W a
2 ( l - i 8 8 ) 1 W(c 8 * 2 ~« 2 ) ]=0 (1-19) 

subject to the three conditions 

| 5 ( 2 w + 5 ) | « | ^ 2 - c o 2 | , (1.20) 

| 5 ( f i e ( l - i 8
2 ) 1 / 2 + 5 ) | « | A 2 ( ^ 2 - ^ 2 ) / 2 | , (1.21) 

and 

FP(u) = Fp(u+8)~(Fp)^+(dFp/da,)^J. (1:22) 

The condition (1.22) requires that Fp can be approxi
mated by two terms of a Taylor series expansion about 
C0 = CO. 

The inequalities (1.20) and (1.21) impose certain 
restrictions on the solution of (1.19). Thus, according 
to (1.21), A cannot be arbitrarily small and, according 
to (1.20), the phase velocity of the excited wave cannot 
be too close to the velocity of light in vacuum. Condi
tions on the size of | 5 | to make the expression (1.22) 
a reasonable approximation can be determined from the 
expansion of Fp. 

Equation (1.19) describes the behavior of the plasma-
beam system under the stated assumptions. If there 
exists a complex value of 5 which satisfies simultane
ously Eq. (1.19) and the stated assumptions, an in
stability is indicated. 

The coefficients in the equation (1.19) depend on the 
characteristic frequency co. Consideration of the dis
criminant of the cubic indicates that the condition for 
complex roots of (1.19) is 

c r c o e W ( l - ^ 2 ) 1 / 2 [ ( ^ / a c o ) ^ ] 2 [(/?,)«_*]« 
— > . (1.23) 

8 27(c2k2-a>2) 

Thus, for sufficiently small values of a it is seen that 
complex roots of (1.19), and hence instability, can occur 
only at frequencies co which satisfy the condition 

(Fp)«-*«0, (1.24) 

or at frequencies which satisfy the condition 

L(Fp)^(c2k2-tf)<0. (1.25) 

The condition (1.24) is identical to (1.18) discussed 
above. Therefore, this condition is satisfied if the in
stability is represented by P waves. Explicit expressions 
will be derived for two frequency ranges. One of these 
ranges consists of frequencies co near the frequency of a 
P wave and is determined by 

I (Fp)«^|«| (apyacoW«|. (1.26) 
The other range consists of frequencies co such that 

| (Fp)^\»\ (dFp/d<*)^+-d\ (1.27) 

and (1.25) both hold. These waves are jB-waves. 

3. P Instability 

(a) Rate of growth: In a P instability the condition 
(1.26) holds and thus the term containing S2 can be 
neglected in the cubic equation (1.19). Consequently, 
the following expression is obtained for | Im51 : 

vs ^(l-pyiwicw-u2)]1!* 
|Im5|=—a-1 '3 . (1.28) 

2 i 2(d/ydco)w=a I 

The above expression represents the rate of growth, 
| Im51, as a function of the frequency co and of the wave 
number k of the excited P wave. Since the wave is in 
resonance with the beam, the wave number k is related 
to co by the equality 

& = k = la>-Qe(l-pyvycPu (1.29) 
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obtained from (1.11). Substituting (1.29) in (1.28), the 
rate of growth can be expressed as follows: 

UmSl 
V3 

T l / 3 
COe2(l~/32)1/2ftV 

2^ 

1/3 

(1.30) 

where <p is obtained by substituting k— k as formulated 
in (1.29) into the expression c2k2—co2 as follows: 

^^081^II,«)= (l/ftflEtftt-ft,*) 
- 2 ^ e ( l - / 3 2 ) 1 / 2 + 0 / ( l - ^ 2 ) ] (1.31) 

and 

fdF. 
) =2w + . (1.32) 

<9o> / w = * («+Oi)2 (^~^e)2 

(b) Frequencies of excited waves: The frequencies of 
the excited waves are represented by the roots of the 
equation (Pp)co=*co = 0. Taking into account that k=k, 
one can express this situation as 

(1.33) $ = 0 , 
where 

-[a,-Oe(l-^2)1 '2]2 

w2(a><,2+a>j2) 
(1.34) 

4. B Instability 

Since, in a B instability, the inequality (1.27) holds, 
the term containing 8s in the cubic equation (1.19) can 
be neglected and the following expression is obtained: 

82=Wft-flWi'te/*) • (L35) 

In order to have an instability, 82 should be negative. 
Consequently, it is necessary that 

< p / $ < 0 . (1.36) 

In such case the rate of growth of the excited wave is 
as follows: 

V2 
|Im$|=—cr1 '2 

2 

<a,Kl-P)lfiPi*<P 

$ 

1/2 

(1.37) 

Thus, if ft. and fti are known, one has an instability 
for frequencies co satisfying the inequality (1.36) and 
the rates of growth corresponding to these functions are 
given by the expression (1.37). 

5. Rate of Growth in "P" and "B" Instabilities 

In accordance with (1.28), the rate of growth of a 
" P " wave can be expressed as 

\Im8\=all*K1, (1.38) 

where K± is a finite valued function of ft, fti, Wf, coe, fl^, 

and fic. This function is independent of a. Hence, for 
<r —> 0, | Im51 tends to zero as the \ power of a. 

Using the relationship (1.37) the rate of growth of a 
"B" wave can be expressed as 

l l m S ! ^ 1 ' 2 ^ (1.39) 

where Ki is a finite valued function of ft, fti, co», Qit 

and Oe. This function is independent of a. Hence, for 
<r —> 0, | Irad \ tends to zero as the § power of a. 

Clearly for sufficiently small values of a, the rate of 
growth expressed by (1.38) is large when compared 
with the rate of growth expressed by (1.39). Conse
quently, in previous investigations the P instability 
has been designated as "strong" and the B instability 
has been designated as "weak."8 In practical applica
tions, however, a cannot be arbitrarily small due to the 
physical nature of the system. Consequently, in certain 
cases the designations of instabilities as "strong" and 
"weak" on the basis of the smallness of a may not be 
justified. Thus, for a fixed value of a it may be possible 
to have a combination of the other parameters which 
satisfy all necessary conditions but are such that the 
growth rate of " P " waves may not be considerably 
larger than the growth rate of a "B" wave. That is, 
even though a112 may be much less than cr1/3 the pa
rameters of the system may cause the coefficient of <rlf2 

to be enough larger than the coefficient of a1/s to offset 
partly this difference. 

6. Dispersion Equation in the Limit of c —»0 

Consideration of circumstances arising as the beam 
intensity <r approaches zero has been a motivating 
factor in the above. Hence it is of interest to determine 
the limiting form of the dispersion equation of the 
plasma-beam system as a tends to zero which can be 
expressed by 

lim(Fp~aFb). 
cr-»0 

Consider the expression for P& as formulated in (1.6). 
Because of the inequality (1.21) the first term in the 
brackets of (1.6) can be neglected when compared to 
the second term and consequently P& has the form 

Fb=M/82, 

where M is independent of 8. 
Suppose there is a P instability. I t is seen from (1.38) 

SUPER- |\ 
LUMINOUS^ | \ 

, INSTABILITY \ | \ 

r\\\ 

® i! 1 I 
^A / |[ Xie ( 

COUNTER- 1 / 
STREAMING j / 
INSTABILITY | / 

<-/32) l /2 

>—& — 

FIG. 1. Graph of 
$(£JL,/3II,CO). Double 
P instability. 
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that 8 is of the order of the | power of cr. Thus, the 
quantity crFb is of the order of a1,z and hence tends to 
zero with <r. Therefore, the dispersion equation (1.4) 
for the plasma-beam system degenerates into the dis
persion equation (1.8) for the stationary plasma as 
<r —» 0. This can be expressed as 

I C0UNTERSTREAM1NG 
INSTABILITY 

\im(Fp 
cr->0 

•ffFb) = Fp (1.40) 

Suppose there is a B instability. It is seen from (1.39) 
that d is of the order of a112. Therefore, the expression 
aFb does not tend to zero with cr. In such case the dis
persion equation (1.4) for the plasma-beam system does 
not degenerate into the dispersion equation for the 
stationary plasma as cr —> 0. This can be expressed as 

lim(Fp-aFb)^Fp. 
<r-»0 

(1.41) 

The expressions (1.40) and (1.41) display the funda
mental difference in the character of B and P instabilities. 

II. MULTIPLE EXCITATION IN A P INSTABILITY 

A. Occurrence of a Multiple Instability 

Consider the equation <3>=0 as formulated in (1.33) 
and (1.34). For any fixed values of /3j. and /3n this equa
tion yields at least two real roots in co, and, therefore, 
there are at least two waves having different frequencies 
which are excited by the beam. Consequently, there is 
a multiple instability. 

The character of the multiple instability can be de
termined from the behavior of the function 

$=$(Pxfin,u) (2.1) 

defined in (1.34) and illustrated qualitatively by the 
curves in Figs. 1, 2, and 3(a). The graphs shown in 
these figures correspond, respectively, to three dif
ferent sets of values of ft. and fin. The frequencies of 
the excited P waves correspond to the roots of $ = 0 
and are, therefore, determined by the points of inter
section of each graph in Figs. 1, 2, and 3(a) with the 
axis of abscissas (the co axis). In Fig. 1 the quantities 
ft i and ft have been chosen so as to provide two points 
of intersection of the graph with the co axis. Therefore, 
there are two waves having different frequencies which 
are exicted in the plasma-beam system (two insta
bilities). The points representing these instabilities are 
labeled Asp and Ac, respectively. In Fig. 2 or in Fig. 3 (a) 

FIG. 2. Graph of 
$O?±,0n,w). Quadru
ple P instability. 
Subluminous excita
tion is represented 
by frequencies below 
the electron gyrofre-
quency of the sta
tionary plasma. 

(a) 

(b) 

(O 

SUPERLUMINOUS INSTABILITY 
COUNTERSTREAMING INSTABILITY 
SUBLUMINOUS INSTABILITY 
POINTS REPRESENTING " p " INSTABILITIES 
EXCLUDED POINTS 

FIG. 3. (a) Graph of <S>(JSJL,/3H,W). Quadruple P instability. Sub-
luminous excitation is represented by frequencies above the 
electron gyrofrequency. (b) Graph of <P(/3J.,J3H,&). The above graph 
intersects the & axis at points B\ and B2 which represent fre
quencies coi and C02, respectively. These frequencies are as follows; 
S i^Qat t - jS^y t f+ iSn) , and «i=Q.(l- j8 a)1 'y(l- j8ii) . (c) Rela
tionship between | Im51 and co. Quadruple P instability. 

there are four points of intersection. Thus, Fig. 2 or 
Fig. 3(a) shows four instabilities, each of which gives 
rise to a growing wave having a distinct characteristic 
frequency (quadruple instability). The points repre
senting these instabilities are labeled Asp, Ac, ASb—i, and 
ASb_2, respectively. Figure 3(c) will be discussed later 
in Sec. IV. [The scales in Figs. 1-3 (c) are considerably 
distorted in order to show the qualitative features of the 
graphs.] 

B. Classification of Instabilities 

In the limiting case of cr —> 0 the frequency co of the 
excited wave tends to co. The classification of instabilities 
discussed in this section is based on the relationship 
between the velocity cfiu of the beam and the phase ve
locity o)/k of the wave excited by the beam. In accord
ance with this classification, the instability labeled Asp 
is "superluminous," the one labeled Ac is "counter-
streaming," and the instabilities labeled Asb_i and 
ASb_2 are "subluminous." 

1. Superluminous Instability (point A sp) 

An instability is superluminous if the beam moves 
in the same direction as the excited wave, and the 
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velocity cfiu of the beam exceeds the phase velocity &/k 
of the wave. I t will be shown that the point A8P in 
Figs. 1, 2, and 3 (a) represents such an instability. 

The frequency <h represented by the point labeled 
Asp satisfies the following inequalities: 

£ < 0 (2.2) 
and 

\&\<Qi. (2.3) 

Therefore, it follows from the relationship (1.11) and 
from the inequality (2.2) that 

kfin<0. (2.4) 

The quantity fin in the inequality (2.4) may be positive 
or negative. Assume that 

A i > 0 , (2.5) 

i.e., the helical beam moves in the direction of the 
magnetic field B0. Then one has 

k<0. (2.6) 

Taking into account (2.2) and (2.6), one obtains 

£ / £ > 0 , (2.7) 

i.e., the phase velocity is positive. Consequently, the 
excited wave moves in the same direction as the beam. 

I t can be seen also from the relationship (1.11) and 
the inequalities (2.2) and (2.4) that 

cpn>S>/k. (2.8) 

Consequently, the velocity of the beam exceeds the 
phase velocity of the wave. 

Using a similar argument, it can be shown that the 
instability represented by the point Asp is also.super-
luminous when the beam moves against the direction 
of Bo03„<O). 

Consequently, whenever the excited frequency is 
negative (co<0), the instability is superluminous for a 
beam moving in the positive or negative direction. If 
the direction of the beam is positive (0n>O), the super-
luminous instability results in the excitation of a wave 
having positive helicity (H+ wave). For a beam moving 
in the negative direction (fi<0), one has k<0 and, 
therefore, and H- wave is excited. 

2. Counter sir earning Instability {point A c) 

The counterstreaming instability is produced by a 
beam moving in the direction opposite to that of the 
excited wave. I t will be shown that the point Ac in 
Figs. 1, 2, and 3(a) represents such an instability. 

The frequency & represented by Ac satisfies the fol
lowing inequalities : 

a>>0 (2.9) 
and 

«<O«(1-0*)1 / 2 . (2.10) 

Taking into account (2.9), (2.10), and (1.11), one 

obtains 
* f t i<0 . (2.11) 

Consequently, if the velocity of the beam is positive 
(0n>0), one has k<0, and, therefore, 

« / * < 0 , (2.12) 

i.e., the wave moves in the direction opposite to that 
of the beam. I t can also be shown that for fiu<0, the 
direction of the wave is opposite to that of the beam. 

For jftii>0 a counterstreaming instability results in 
the excitation of an B.-. wave, whereas for fiu<0, an 
H+ wave is excited. 

3. Subluminous Instabilities {points ASb-i cmd Asb-%) 

An instability is subluminous if the beam moves in 
the same direction as the excited wave, and the ve
locity of the beam is lower than the phase velocity co/k 
of the wave. I t will be shown that the points A8b-i and 
ASb_2 in Figs. 1, 2, and 3 (a) represent such an instability. 

The frequencies co represented by ASb-i and ASb-2 
satisfy the inequality 

£>Oe( l -0 2 ) 1 / 2 . (2.13) 

I t follows from the inequality (2.13) and from the 
relationship (1.11) that 

kfiu>0. (2.14) 

The quantity fin in the inequality (2.14) may be 
positive or negative. Assume that 

fti>0. (2.15) 

One has then 
k>0 (2.16) 

and, consequently, one obtains from co>0 and the 
inequality (2.16) that 

« / A > 0 , (2.17) 

i.e., the phase velocity is positive and, therefore, the 
wave moves in the same direction as the beam. 

Using the relationship (1.11) and the inequality 
(2.13), one obtains 

cfiu<u/k. (2.18) 

Consequently, the velocity of the beam is lower than 
that of the wave. 

I t can be shown by means of a similar argument that 
the instability represented by the points ASb_i and 
Asb-2 is also subluminous when the beam moves against 
the direction of B0 (fi<0). 

For J 8 N > 0 a subluminous instability results in the 
excitation of an i?_ wave, whereas for fiu<0, an H+ 

wave is excited. 
A superluminous instability gives rise to a wave ro

tating in the same direction as the perturbed stationary 
ions (i.e., &<0), whereas a counterstreaming or a sub-
luminous instability gives rise to a wave rotating in the 



P L A S M A W I T H " H E L I C A L " E L E C T R O N B E A M A1183 

same direction as perturbed stationary electrons (i.e., 
co>0), 

III. FREQUENCIES AND RATES OF GROWTH 
IN A "P" (STRONG) INSTABILITY 

A. General 

Consider now various types of stationary plasmas 
which may interact with a helical electron beam. A 
very useful classification of plasmas based on two non-
dimensional parameters 

and 

A2=a>i2/n; (3.1) 

= Mi/m (3.2) 

was introduced by Denisse and Delcroix.5 According 
to this classification, a plasma is "very rarefied" when 
A2<rrl\ "rarefied" when rr1<A2<l; is of "small 
density" when KA2<rj; and is "dense" when A2>tj. 
Very rarefied and rarefied plasmas are not of particular 
practical significance at the present time. Such plasmas 
are usually found only in evacuated vessels in the 
presence of a very strong magnetic field such as in 
cyclotrons, etc. Most of the plasmas which occur in 
nature or which are produced in a laboratory are of 
small density or dense. 

(a) 

IO~'fte 

10"% 

o 
-D,\ 

SUBLUMINOUS^ 

FIG. 4. (a) Relationship between the frequency w of an excited P wave 
and the corresponding beam velocity fi\\ in a plasma-beam system char
acterized by A = 1, 77 = 1837, and 01 = 0.6. (b) Relationship between the fre
quency & of an excited P wave and the corresponding beam velocity /3n in 
a plasma-beam system characterized by A = 1,77 = 1837, and /?i = 0.7. (c) Re
lationship between the frequency & of an excited P wave and the corre
sponding beam velocity /?n in a plasma-beam svstem characterized by A = 1, 
77 = 1837, and 0i = O.8. 
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A=IOO A=50 A=20 A?!0 

0.1 0.2 0 3 0.4 0.5 0.6 0.7 0.8 J 0 9 
'] SUBLJUMINOUS-^ > $f^ " 

(a) (b) 

COUNTERSTREAMING* 

0.1 0.2 03 
- i l i SUPERLUMINOUS^ n Z 

(c) 

FIG. 5. (a) Relationship between the frequency 6b of an excited P wave and the corresponding beam velocity /?n in plasma-beam sys
tems characterized by TJ = 1837, 01 = 0.5, and A = 10, 20, 50, and 100. (b) Relationship between the frequency 6b of an excited P wave and 
the corresponding beam velocity /3n in plasma-beam systems characterized by -q = 1837, /3j. = 0.8, and A = 10, 20, 50, and 100. (c) Rela
tionship between the frequency cb of an excited P wave and the corresponding beam velocity Bn in plasma-beam systems characterized 
by 7} = 1837, ft=0.9, and A = 10, 20, 50, and 100. 

The interaction of a stationary plasma with a helical 
electron beam will now be described in terms of the 
parameters A and rj characterizing the plasma and the 
parameters ft and ft, characterizing the beam. 

B. Frequencies of Excited Waves 

1. Graphical Representation of the Relationship Between 
the Frequency o) of an Excited Wave and the 

Velocity ft, of the Beam 

Using a nondimensional quantity, 

X=£ /Q e , (3.3) 

representing the frequency of an excited wave and the 
parameters A, i\, /3j., and p„, characterizing a plasma-
beam system, the following relationship is obtained 
from (1.33): 

1 A2X2(1+V) 
X2 VX- (1-/32)"2]2 = 

ft,2 v(r,X+l)(X-l) 
= 0. (3.4) 

If A, rj, and ft are fixed, one can obtain from (3.4) the 
relationship between the excited frequency X (or Co) 
and the velocity ft , of the beam. Such a relationship is 
represented graphically in Figs. 4(a), 4(b), and 4(c) in 
which the excited frequencies are plotted asordinates 
and the beam velocities are plotted as abscissas. The three 
types of instability produced by the beam are clearly 
illustrated by means of three curves labeled "super-
luminous/' "counterstreaming," and "subluminous." 

In all three systems illustrated in Figs. 4(a), 4(b), 
and 4(c), the stationary plasma is assumed to be the 
same and is defined by A — l and t\ =1837. (These 

values of A and 77 are particularly convenient in order 
to represent within the scale of the drawings the char
acteristic features of the plasma-beam interaction.) I t 
should be noted that the helical electron beam inter
acting with the plasma is different in each of the cases 
illustrated in these figures. In Fig. 4(a) ft=0.6, and the 
corresponding values of ft in Figs. 4(b) and 4(c) are 
ft=0.7 and ft = 0.8, respectively. The abscissas in each 
of these graphs cover progressively decreasing range 
which extends from fti = 0 to fti= ( l - f t 2 ) 1 / 2 . 

2. Three Types of Plasma-Beam Systems 

The comparison of Figs. 4(a), 4(b), and 4(c) shows 
the general trend in the behavior of the plasma-beam 
interaction for increasing values of ft. In order to 
facilitate further discussion on this subject, the plasma-
beam system illustrated in Fig. 4(a) will be referred to 
as belonging to type I, whereas the systems illustrated 
in Figs. 4(b) and 4(c) will be referred to as belonging to 
types I I and I I I , respectively. The characteristic fea
tures differentiating the above plasma-beam systems 
are as follows: 

(a) In a system of type I I I the instability is always 
quadruple, i.e., there are always four waves excited by 
a beam having any fixed velocity fti. On the other hand, 
in a system of type I or type I I there are certain 
velocity ranges in which the instability is quadruple 
and other velocity ranges in which the instability is 
double. 

(b) In a system of type I I the subluminous in
stabilities are represented by frequencies which are 
always below the electron gyrofrequency of the sta
tionary plasma. Therefore, these frequencies satisfy the 
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inequality Fig. 4(a) as follows: 

ne(i-/32)1 /2<j><o< ! . (3.5) 

(c) In a system of type I there are two frequency 
ranges which characterize a subluminous instability. 
One of these is represented by (3.5), and the other is 
represented by the inequality 

0)>tie (3.6) 

Thus, in a plasma-beam system of type I a subluminous 
instability may be represented by a frequency which 
exceeds the electron gyrofrequency of the stationary 
plasma. 

In a different graphical representation discussed in a 
previous section, the subluminous instabilities char
acterized by frequencies in the range (3.5) are shown 
in Fig. 2, whereas the subluminous instabilities char
acterized by frequencies in the range (3.6) are shown 
in Fig. 3(a). 

I t is noted that whenever the instability is double, 
the two excited waves represent, respectively, a super-
luminous and counterstreaming instability. On the 
other hand, in case of a quadruple instability one excited 
wave represents a superluminous instability, another 
excited wave represents a counterstreaming instability, 
and there are two excited waves representing a sub-
luminous instability. 

Plasma-beam systems of type I are characterized by 
two velocity regions in which there is a double insta
bility. These regions are represented, respectively, in 

and 
ft,<fl><fti<ft 

ft,(c)<ft.<ft. 

Ab) 

(d) 

(3.7) 

(3.8) 

On the other hand, in plasma-beam systems of type I I 
there is only one velocity region in which the insta
bility is double. This region is represented in Fig. 4(b) 
as follows: 

fti(e)<fti<fti(/). (3.9) 

3. "Critical" Values of the Transverse 
Velocity Component ft 

A numerical analysis has been performed on various 
plasma-beam systems characterized by a wide range of 
values of A and rj which, according to the classification 
of Denisse and Delcroix,5 represent the majority of all 
typical plasmas encountered in nature or produced in a 
laboratory. One has 77= 1837 for a plasma comprised of 
hydrogen ions (such as solar corona and interstellar 
clouds), r) = 7348 for helium ions, and rj^58 784 for 
molecular oxygen ions encountered in the ionosphere 
and in electrical discharges through air. I t can be con
cluded from this analysis that for a given value of A 
and 17 there are two critical values ft' and ft" of ft 
where ft'<ft" and such that plasma-beam systems of 
types I, I I , and I I I are characterized by ft>ft", 
ft">ft>ft', and ft<ft', respectively. 

The relationship between the beam velocity fti and 
the frequency & of an excited wave in other typical 
plasma-beam systems is represented graphically in Figs. 
5(a), 5(b), and 5(c). 

SUBLUMINOUS-

0 " 3 f t e 

SUPERLUMINOUS. 

'SUBLUMINOUS 

(a) (b) (c) 

FIG. 6. (a) Relationship between the rate of growth F = | Im51 /<r1/3Oe of an excited P wave and the corresponding beam velocity J#H 
in a plasma-beam system characterized by A = 1, 77 = 1837, and #1 = 0.6. (b) Relationship betweenthe rate of growth F = | Im51/cr1/80« 
of an excited P wave and the corresponding beam velocity /3u in a plasma-beam system characterized by A = 1,77 =1837, and 01 = 0.7. 
(c) Relationship between the rate of growth Y— | Im51 /a-ll3Qe of an excited P wave and the corresponding beam velocity /3JI in a plasma-
beam system characterized by A = 1,77 = 1837, and 01=0.8. 
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SUBLUMINOUS 
/ 

COUNTERSTREAMING 

0.5 

(a) (b) (c) 

FIG. 7. (a) Relationship between the rate of growth F = | Im51 /<rll3Qe of an excited P wave and the corresponding beam velocity (3u in 
plasma-beam systems characterized by rj = 1837, 01 = 0.5, and 4 = 10, 20, 50, and 100. (b) Relationship between the rate of growth 
F = I ImS J /<r1/3&e of an excited P wave and the corresponding beam velocity 0n in plasma-beam systems characterized by r? = 1837, 
01 = 0.8, and A = 10, 20, 50, and 100. (c) Relationship between the rate of growth F = | ImS | /a1/3Qe of an excited P wave and the corre
sponding beam velocity 0 n in plasma-beam systems characterized by r? = 1837, 0i = O.9, and A = 10, 20, 50, and 100. 

C. Rate of Growth of Excited Waves 

Using a nondimensional quantity, 

Y=\Imd\/a1^6 (3.10) 

representing the rate of growth of an excited wave, the 
following equality is obtained from (1.30): 

y/3 

2 

A^i-^y^Kx-ii-^y^y-x2^^ 1/3 

2^ n
2 [2X~(^ 2 A(7 7 x+i) 2 )+(^ 2 A(x~i) 2 ) ] ! 

(3.11) 

The above equality represents a relationship between 
the quantities Y and X characterizing an excited wave 
and the parameters A, rj, f$±, and 0,, representing the 
plasma-beam system. Combining (3.4) and (3.11), one 
can eliminate X and obtain a relationship expressing Y 
as a function of the plasma parameters A, r/ and the 
beam parameters fa, £,,. 

If A9 rj, and pi are fixed, one can obtain the relation
ship between the rate of growth Y (or |Im5| if one 
assumes that <r and Oe are fixed) and the velocity fai 
of the beam. Such a relationship is represented graphi
cally in Figs. 6(a), 6(b), and 6(c). The quantities A = l, 
97=1837, and 01 — 0.6 are the same in Figs. 4(a) and 
6(a). Similarly, one has A = l, TJ=1837, and /?j. = 0.7 in 

Figs. 4(b) and 6(b), and A = l,rj = 1837, and ^ = 0 . 8 in 
Figs. 4(c) and 6(c). 

The relationship between the beam velocity /?n and 
the rate of growth Y (or | Imd |) of the excited waves 
for the values of A and 77 in Figs. 5(a), 5(b), and 5(c) 
is represented graphically in Figs. 7(a), 7(b), and 7(c), 
respectively. 

It is seen from the above graphs that the rate of 
growth characterizing a superluminous instability is 
always smaller than the corresponding rate of growth 
in a subluminous or a counterstreaming instability. 

D. Index of Refraction and Velocity Index 

Consider now the phase velocities 00/k of the char
acteristic waves excited by a helical beam. The prop
erties of a plasma-beam system may be described by 
means of a velocity index 

S—ckpu/a), (3.12) 

representing the ratio of the beam velocity of cfiu to 
the phase velocity of the characteristic wave, or by 
means of a refractive index 

N=\ck/<*\ (3,13) 

representing the magnitude of the ratio of the velocity 
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of light in a vacuum to the phase velocity of the char
acteristic wave. 

Figure 8 illustrates graphically the relationship be
tween the velocity /3n of the helical beam and the 
absolute value of the index S characterizing various 
waves excited by the beam. I t is apparent that in a 
superluminous instability one has 5 > 1 , whereas in a 
subluminous and counterstreaming instability one has 
0 < 5 < 1 and S<0, respectively. Figure 9 illustrates 
graphically the relationship between the velocity j8n 

and the index N characterizing various waves excited 
by the beam. Both Figs. 8 and 9 apply to plasma-beam 
systems characterized by 77= 1837, /3j.=0.8, and A = 10, 
20, 50, and 100. 

IV. COMPARISON OF "P» (STRONG) AND 
"£» (WEAK) INSTABILITIES 

I t will be shown that both P and B instabilities occur 
simultaneously in a system excited by a helical beam. 
Some of the B instabilities occupy frequency ranges in 
the immediate neighborhood of frequencies which char-

FIG. 8. Relationship between the absolute value of the ve
locity index S—ckfiu/ta and the beam velocity /8u in plasma-beam 
systems characterized by ,4 = 10, 20, 50, and 100, ^ = 1837, and 
01 = 0.8. 

FIG. 9. Relationship between the refractive index N = \ ck/co | 
and the beam velocity /Sn in plasma-beam systems characterized 
by A =10, 20, 50, and 100,77 = 1837, and 01=0.8. 

acterize the corresponding P instability. Therefore, they 
represent "continuations" of the P instabilities along 
the frequency axis. These continuations are extended 
either into the region of higher frequencies or into the 
region of lower frequencies. A similar continuation of a 
P instability into the region of B instabilities has been 
described in previous investigations.8 In these previous 
investigations the P instability resulting from a "strong 
interaction" was designated as "strong." The B insta
bility resulting from a "weak interaction" was desig
nated as "weak." 

Consider Eq. (1.19). If various parameters defining 
the plasma-beam system are fixed, this equation yields 
an expression of the form 

| I m a | - f ( « ) , (4.1) 

in which the rate of growth is represented as an explicit 
function of the frequency of the excited wave. A quali
tative behavior of the function (4.1) is illustrated 
graphically in Fig. 3(c). 

The general behavior of the graph in Fig. 3 (c) can be 
readily ascertained from the inspection of Figs. 3(a) 

10 
A= 10,20,50,100 

SUPERLUMINOUS-
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FIG. 10. "ca—k" diagrams for an unperturbed plasma 
and for the resonant beam. 

and 3(b). It should be recalled here that the graph of 
Fig. 3(a) represents the function <£ formulated in (1.34). 
The graph of Fig. 3(b) represents the function <p 
formulated in (1.31). 

The P instabilities can be readily identified in Fig. 
3(c) since they correspond to the points Asp, Ac, ABb_i, 
and ASb_2 at which the graph of Fig. 3(b) intersects 
the co axis. 

The B instabilities shown in Fig. 3(c) can be ascer
tained from the inspection of Figs. 3(a) and 3(c). It is 
known from the inequality (1.36) that a B instability 
corresponds to frequency ranges for which the ordinates 
in Figs. 3(a) and 3(b) are of opposite signs. The quan
tity a corresponding to the graph of Fig. 3(a) is chosen 
to be relatively small. Therefore, the P instabilities are 
considerably more intense, i.e., characterized by con
siderably larger rate of growth | Im51 than the B insta
bilities. For other somewhat larger values of <r (which 
nevertheless satisfy the inequality <r<$Cl) the contrast 
between the strong P instabilities and the weak B 
instabilities may be less accentuated. 

A classification similar to the one used for P insta
bilities can be applied to B instabilities. Thus, B in
stabilities may be superluminous, subluminous, or 
counterstreaming. It can be shown that a superluminous 
P instability represented by Asp continues in the neigh
boring higher frequency range as a superluminous B 
instability. Similarly, the counterstreaming B insta
bility represented by Ac continues into the neighboring 
lower frequency range as a counterstreaming B 
instability. 

There are also regions of no instability shown in 
Fig. 3(c). These regions correspond to frequency ranges 
in which the ordinates of Figs. 3(a) and 3(b) are either 
both positive or both negative. 

V. KINEMATIC BEHAVIOR OF PLASMA-BEAM 
INSTABILITIES 

The analysis of the dispersion equation (1.4) was 
based on the assumption that k is real and the roots 
of this equation were expressed in the form co = co+5 

where oi is real. An instability was shown to occur when 
lm$<0 and the expressions (1.30) and (1.37) provided 
a formulation for the rate of growth of excited waves in 
terms of various parameters of the plasma-beam system. 
A further discussion on this subject resulted in deter
mining certain characteristic properties of these in
stabilities. Several criteria have been established for 
distinguishing between the excited P and B waves and 
between instabilities which may be superluminous, sub-
luminous, and counterstreaming. 

The above analysis did not indicate, however, the 
kinematic behavior of the instabilities. Thus, it is not 
known whether the instabilities produced by a helical 
beam are convective or nonconvective. In other plasma-
beam systems the kinematic behavior of various in
stabilities has been well explored. In several recent 
investigations it was shown that in the absence of the 
magnetic field Bo, there are longitudinal and hybrid 
instabilities and both instabilities are convective.17 In 
an analogous situation concerning the interaction of a 
beam with a stationary dielectric medium (comprising 
bound oscillators) it was shown that the resulting Bohr 
and Vavilov-Cherenkov instabilities are convective.18 

The character of the plasma-beam interaction de
pends on the presence or absence of the static magnetic 
field B0. If B0=0, one has an instability when the 
velocity of the beam cfi is equal to the phase velocity 
oo/k of the excited wave.4 Such an equality does not 
exist, however, when the plasma-beam system is im
mersed in a magnetic field B0. In such case the relation
ship between these two velocities is strongly dependent 
on the presence or absence of ft.. If & = 0 (linear beam), 
the velocity of the beam exceeds the phase velocity of 
the wave, i.e., there is a superluminous instability. It 
has been shown in a recent investigation that such a 
superluminous instability is convective.7 

FIG. 11. "<a — k" diagram for a helical electron beam interacting 
with a stationary plasma [case corresponding to Fig. 3(a)]. 

17 J. E. Drummond and D. B. Chang, Bull. Am. Phys. Soc. 6, 
411 (1958); V. T. Kurilko, V. D. Shapiro, and IA. B. Fainberg, 
Report of Physico-Technical Institute of Ukrainian Academy of 
Sciences, UK. S.S.R., 1959 (unpublished); Jacob Neufeld and 
Harvel Wright, Phys. Rev. 127, 346 (1962). 

18 Jacob Neufeld and Harvel Wright, Phys. Rev. 124, 1 (1961). 
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On the other hand, if jftj.̂ 0 (helical beam), there 
is a subluminous and a counterstreaming instability. 
Using a graphical analysis of the dispersion equation 
(1.4) it will be shown that the superluminous and sub-
luminous instabilities are convective, whereas the 
counterstreaming instabilities are nonconvective. 

The graphical representation of the dispersion equa
tion (1.4) in the co—k plane is shown in Figs. 11 and 12. 
The graphs shown in these two figures correspond to 
the plasma-beam systems of the type illustrated in 
Figs. 3(a) and 2, respectively. 

The dispersion equation (1.4) has the form Fp—crFb 
= 0, i.e., it contains the term Fp representing the sta
tionary plasma and the term crFb representing the beam. 
In examining the behavior of the graphs in Figs. 11 and 
12, it will be useful to plot an auxiliary diagram as shown 
in Fig. 10. This auxiliary diagram shows a graph Fp—0 
representing the dispersion in the unperturbed plasma 
and a graph co=ckt3u+tte(l—/32)1/2 representing the 
resonance between the beam and the excited waves. 
One can observe in Fig. 10 that for any real value of k 
there are four real values of co which satisfy the dis
persion equation Fp=0. Of particular interest are the 
points of intersection of the line co=dfy3n+&e(l—/32)1/2 

with the graph of Fp(k,oo) = 0. These points of inter
section shown in Fig. 10 represent waves which are in 
resonance with the beam and which at the same time 
can be propagated through the stationary plasma. These 
waves, when perturbed by the beam, become "excited 
P waves." The frequencies of these waves are labeled 
Asp, Ac, Asb_i, and ASb-2 on the frequency axis (ordi
nate). This labeling is to be compared with the labeling 
on the frequency axis (abscissa) of Fig. 3(a). An ex
ample of the actual values of the parameters rj, A, /?,,, 
and fi± for a plasma-beam system of this type can be 
found in Fig. 5(a) where .4 = 10, /3n = 0.7, ??=1837, 
and ft.=0.5. 

By comparing Fig. 10 with Fig. 11 it can be seen how 
the diagram of the unperturbed plasma is modified by 
the interaction with the beam. For small values of a the 
diagram for the stationary plasma is appreciably 
changed only in the immediate neighborhood of the 
line co=co, where co=t^n+fie(l-02)1 /2 . 

Figure 11 should now be compared with Fig. 3(c). 
All points that are labeled on the frequency axis in 
Fig. 3(c) are correspondingly labeled on the frequency 
axis in Fig. 11. It is noted that certain regions exhibit 

<£=ck/3(|+&e(i-/3
2)£ 

FIG. 12. "co~k" diagram for a helical electron beam interacting 
with a stationary plasma (case corresponding to Fig. 2). 

no instability. For example, consider assigning a real 
value k=k' such that a^ck'pn+Qeil-p2)1'2 is be
tween the points 12 e and Asb_i. Figure 3(c) then shows 
that there is no instability, i.e., co is real. This can also 
be seen from Fig. 11. For the value k = kf marked in 
Fig. 11, which is such that co is between 12 e and ASb_i, 
there are six real values of co which satisfy the dispersion 
equation Fp—aFb—0. These frequencies correspond to 
the intersections of the curve with a vertical line 
through the point k — k'. Regions of instability indicated 
in Fig. 3(c) can also be seen in Fig. 11 since for these 
values of k there are four real values of co and thus two 
complex values. 

Figure 12 is similar to Fig. 11 but illustrates a plasma-
beam system of the type shown in Fig. 2 or shown, for 
example, in Fig. 5(b) for A = 100 and /3H = 0.05. 

Figure 12 is such that the line o)—cc=ck0u 

+12e(l —/32)1/2 representing the resonance between the 
beam and the excited waves intersects a different branch 
of the curve Fp=0. 

Figures 11 and 12 can be used to determine the kine
matic behavior of the plasma-beam systems. The pro
cedure outlined by Sturrock11 was described in detail 
for a diagram of a similar nature to those of Figs. 11 
and 12 in a previous investigation.7 It should be kept 
in mind that the resonance condition (1.11) limits the 
region of applicability of these figures to a narrow strip 
along the line co=co. By applying the above procedure, 
subject to this restriction, it is seen that the counter-
streaming P instability is not convective but the super-
luminous and subluminous P instabilities are convective. 


